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Società Italiana di Fisica
Springer-Verlag 2000

The link overlap and finite size effects for the 3D Ising spin glass

B. Drossela, H. Bokil, M.A. Moore, and A.J. Bray

Theory Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Received 25 May 1999

Abstract. We study the link overlap between two replicas of an Ising spin glass in three dimensions using
the Migdal-Kadanoff approximation and scaling arguments based on the droplet picture. For moderate
system sizes, the distribution of the link overlap shows the asymmetric shape and large sample-to-sample
variations found in Monte-Carlo simulations and usually attributed to replica symmetry breaking. However,
the scaling of the width of the distribution, and the link overlap in the presence of a weak coupling between
the two replicas are in agreement with the droplet picture. We also discuss why it is impossible to see the
asymptotic droplet-like behaviour for moderate system sizes and temperatures not too far below the critical
temperature.

PACS. 75.50.Lk Spin glasses and other random magnets

1 Introduction

A series of computer simulations performed in the past
few years [1,2] appear to support the claim that the
three-dimensional Edwards-Anderson spin glass shows sig-
natures of replica-symmetry breaking (RSB), implying
the existence of infinitely many pure states in the low-
temperature phase. In contrast, almost rigorous argu-
ments [3] and a numerical analysis of the ground state
structure [4] favour the droplet picture [5–7] with only
one pair of pure states. Some recent experimental pub-
lications, e.g. [8], also favour the droplet picture, while
others are less definite [9].

In a recent paper [10], we have suggested that due to
the high temperatures and small system sizes the com-
puter simulations [1,2] are strongly affected by the crit-
ical point and do not reflect the true low-temperature
behaviour. This suggestion was supported by a numer-
ical calculation of the Parisi overlap function using the
Migdal-Kadanoff approximation (MKA). For the system
sizes and temperatures typically used in computer simu-
lations we found overlap functions similar to those in [1],
however for lower temperatures we found agreement with
the predictions of the droplet picture. That the results of
computer simulations are strongly affected by the critical
point can also be concluded from [11], where the Parisi
overlap function shows critical scaling (with effective ex-
ponents) down to temperatures ' 0.8Tc.

In recent publications [12–14], it is claimed that non-
trivial behaviour of a quantity called the link overlap is a
reliable indicator of RSB. However, in order to place such
a claim on solid ground, one would have to show that the
data cannot be interpreted within the framework of the
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droplet picture. It is the goal of this paper to furnish this
discussion which has been missing so far. As in [10], we
use the MKA which is known to agree with the droplet
picture. Our results show, as in the case of the Parisi over-
lap function, that several nontrivial features attributed to
RSB are in fact due to finite-size effects, and that the
numerical data on the link overlap published so far are in-
deed in agreement with the droplet picture. We also derive
expressions for the effective coupling at any temperature
as a function of system size and find that one indeed needs
rather large systems or low temperatures to see droplet-
like behaviour.

The outline of this paper is as follows: After introduc-
ing the model and defining the quantities to be evaluated,
we present first our analytical and numerical results for
the link overlap distribution function. Then, we evaluate
the link overlap in the presence of a weak coupling between
the two replicas. In the following section we explain why
finite size effects are so large for the three–dimensional
Ising spin glass. Finally, we summarize and discuss our
findings.

2 Definitions

The Hamiltonian H0 of the Edwards-Anderson (EA) spin
glass in the absence of an external magnetic field is
given by

βH0 = −
∑
〈i,j〉

Jijσiσj ,

where β = 1/kBT . The Ising spins can take the values ±1,
and the nearest-neighbour couplings Jij are independent
from each other and Gaussian distributed with a standard
deviation J .
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Fig. 1. Construction of a hierarchical lattice.

It has proven useful to consider two identical copies
(replicas) of the system, and to measure overlaps between
them. This gives information about the structure of the
low-temperature phase, in particular about the number of
pure states. The quantity considered in this paper is the
link overlap

q(L)(ε) = (1/NL)
∑
〈i,j〉
〈σiσjτiτj〉 (1)

where the sum is over all nearest-neighbour pairs 〈i, j〉 of
a lattice with NL bonds and N sites, and the brackets
denote the thermal and disorder average. σ and τ denote
the spins in the two replicas. The Hamiltonian used for
the evaluation of the thermodynamic average is

βH[σ, τ ] = βH0[σ] + βH0[τ ]− ε
∑
〈i,j〉

σiσjτiτj , (2)

where H0 is the ordinary spin glass Hamiltonian given
above, and the term in ε introduces a coupling between
the two replicas.

In cases where the random couplings Jij are taken to
have the values ±1, the link overlap is identical to the
energy overlap. The main qualitative differences between
the Parisi overlap

q(P ) =
N∑
i=1

(1/N)〈σiτi〉 ,

and the link overlap are (i) that flipping all spins in one
of the two replicas changes the sign of q(P ) but leaves
q(L) invariant, and (ii) that flipping a droplet of finite
size in one of the two replicas changes q(P ) by an amount
proportional to the volume of the droplet, and q(L) by an
amount proportional to the surface of the droplet.

Below, we will show that, just as for the Parisi over-
lap, the MKA can reproduce all the essential features of
the link overlap found in Monte-Carlo simulations. These
results refute the claim made in [14] that the agreement
between the MKA and simulations for the Parisi overlap
reported in [10] is a mere coincidence that does not ex-
tend to the link overlap. The conclusion must be drawn
that there is no evidence for RSB in three dimensional
Ising spin glasses.

Evaluating a thermodynamic quantity in MKA in
three dimensions is equivalent to evaluating it on a hier-
archical lattice that is constructed iteratively by replacing
each bond by eight bonds, as indicated in Figure 1. The to-
tal number of bonds after I iterations is 8I , which is iden-
tical to the number of lattice sites of a three-dimensional
lattice of size L = 2I . Thermodynamic quantities are
then evaluated iteratively by tracing over the spins on

the highest level of the hierarchy, until the lowest level
is reached and the trace over the remaining two spins is
calculated [15]. This procedure generates new effective
couplings, which have to be included in the recursion re-
lations. In [16], it was proved that in the limit of infinitely
many dimensions (and in an expansion away from infi-
nite dimensions) the MKA reproduces the results of the
droplet picture. We have shown in [10] that the MKA
agrees with the droplet picture in three dimensions as well.
For this reason, no feature that is seen in MKA can be
attributed to RSB.

3 The probability distribution of the link
overlap

We first set the coupling strength ε in equation (2) to
zero and study the probability distribution P (q(L)) of the
link overlap, averaged over a sufficiently large number of
samples. RSB should manifest itself in P (q(L)) according
to [12,13] in an asymmetric (non-Gaussian) shape and a
nonzero width even at infinitely large system sizes. Fur-
thermore, the link overlap for single samples should show
large variations between different samples. Here, we show
that the asymmetric shape and large sample to sample
variations can even be seen in MKA for moderate system
sizes and can therefore not be taken as evidence for RSB.
The only reliable indicator for RSB would be a width of
P (q(L)) that does not shrink with increasing system size.
However, the only Monte-Carlo simulation data published
so far for P (q(L)) [13] are taken for a four-dimensional
Ising spin glass in a magnetic field, and they show a shrink-
ing width, in agreement with the expectations from the
droplet picture.

We have obtained the function P (q(L)) by first
calculating its Fourier transform,

F (y) =

〈
exp

iy
∑
〈ij〉

σiτiσjτj
NL

〉 .
The coefficients an in

P (q(L)) =
NL/2∑

n=−NL/2
anδ(q(L) − 2n/NL)

are then found from F (y):

an = (1/πNL)
∫ πNL/2

−πNL/2
F (y) exp(2iyn/NL)dy.

Figures 2, 3 and 4 show our result for P (q(L)) in MKA for
three different temperatures. All curves have been aver-
aged over several thousand samples. The curves for small
L are asymmetric at T = Tc with a tail on the right-
hand side. With decreasing temperature, the asymmetry
becomes stronger, the tail moves to the left-hand side, and
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Fig. 2. The link overlap distribution P (q(L)) for T = Tc and
L = 4, 8, 16, 32 (from widest to narrowest curve).
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Fig. 3. The link overlap distribution P (q(L)) for T = 0.7Tc

and L = 4, 8, 16, 32 (from widest to narrowest curve).

a shoulder is formed. All these features seem to be finite-
size effects, as they become weaker with increasing system
size.

Figures 5 and 6 show P (q(L)) for single samples at
T = 0.7Tc and for L = 8 (Fig. 5) and L = 16 (Fig. 6).
In particular for L = 8, there are large variations between
different samples, a feature that is usually assumed to be
a clear indicator of RSB. However, since the MKA does
not show RSB, we must assign this feature to finite-size
effects.

Finally, let us study the width

∆q(L) =

√∫ 1

−1

(q(L) − q̄(L))2P (q(L))dq(L)

of P (q(L)). Figure 7 shows our results on a double loga-
rithmic plot, together with a power-law fit q(L) ∼ L−ω.

At T = Tc, the exponent ω is sufficiently close to
d/2 = 1.5 to suggest that the leading contribution to
∆q(L) comes from the superposition of independent con-
tributions of the different parts of the system, just as it
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Fig. 4. The link overlap distribution P (q(L)) for T = 0.45Tc

and L = 4, 8, 16, 32 (from widest to narrowest curve).
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Fig. 5. The link overlap distribution P (q(L)) for four different
samples at L = 8 and T = 0.7Tc.

does for higher temperatures. Below, we shall see explicitly
that critical point nonanalyticities are indeed subleading
to the regular contributions.

Within the framework of the droplet picture, the value
of ω at the zero temperature fixed point can be calculated
as follows: The main excitations at low temperatures or
large scales are droplets of flipped spins of a radius r ' L
in one of the replicas. Such droplets occur with a proba-
bility proportional to

(L/r)dr−θkT,

and each of them makes a contribution of the order

r2dsL−2d

to (∆q(L))2. ds is the fractal dimension of the droplet sur-
face and is d − 1 in MKA, and θ is the scaling exponent
of the coupling strength and has a value around 0.24 in
MKA in d = 3. We therefore find

∆q(L) ∼
√
kTLds−d−θ/2,
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Fig. 6. The link overlap distribution P (q(L)) for three different
samples at L = 16 and T = 0.7Tc.

giving ω ' 1.12 in MKA. Our above data for T = 0.45Tc

are not far from this result. For larger system size, they
must ultimately converge to it. Just as in the case of
the Parisi overlap [10], the crossover from critical to low-
temperature behaviour is so slow that even for T ' 0.4Tc

the asymptotic regime is not reached for system sizes up
to 32, and the curves appear to show effective exponents.

For a cubic lattice, we have ds ' 2.2 [17] and θ ' 0.2
[5,18], predicting a value ω ' 0.9 within the framework of
the droplet picture. However, very recent data [4] suggest
that ds might in fact be as large as 2.7, which would lead
to ω ' 0.4. This has to be compared to the RSB scenario,
where ω = 0. In [14], it is claimed that Monte-Carlo sim-
ulation data at T ' 0.6Tc and L ≤ 12 show already the
signatures of RSB. However, as yet there is no published
data for∆q(L). Only if the value of ω drops below the value
predicted by the droplet picture and approaches zero with
increasing system size, can one conclude that RSB occurs.
(The fact that P (q(L)) changes its shape with increasing
system size may lead to additional delays in reaching the
asymptotic large L limit.)

4 The link overlap in the presence
of a coupling between the two replicas

In [12,14], the authors suggested studying the expecta-
tion value of the link overlap in the presence of a cou-
pling between the two replicas, q(L)(ε), in order to test
whether a system shows RSB. A positive coupling ε in
equation (2) favours a configuration where both replicas
are in the same state, while a negative ε favours config-
urations with smaller overlaps. If the RSB scenario were
correct, the distribution P (q(L)) would have a finite width
even for L → ∞ and range from some minimum value
qmin to a maximum value qmax. Consequently, the expec-
tation value of the link overlap, q(L)(ε), would have a jump
from qmin to qmax at ε = 0 in the thermodynamic limit
L→∞ [14]. In contrast, as we will show next, the droplet
picture predicts a continuous and at ε = 0 nonanalytic
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Fig. 7. Width of P (q(L)), ∆q(L), as a function of L for T = Tc

(circles), T = 0.7Tc (squares) and T = 0.45Tc (diamonds),
together with a power-law fit. The exponents of the three fits
are 1.43, 1.33 and 1.23.

function q(L)(ε) [19]. Part of these results were published
in [19].

Within the droplet picture, the scaling dimension of ε
in the spin glass phase can easily be obtained. At length
scale 1, ε is equivalent to the energy cost of flipping one
spin in one of the two replicas. On a scale l, this becomes
the energy cost of flipping a droplet of radius l in one of the
replicas, which is proportional to εlds . The scaling dimen-
sion of ε is therefore ds, where ds is the fractal dimension of
the droplet surface. Equivalently, ds is the fractal dimen-
sion of a domain wall. Within MKA, we have ds = d− 1.
The same value d− 1 for the scaling dimension of ε is also
obtained from an analytical calculation of the recursion
relations for ε and the strength J of the random couplings
near the T = 0 fixed point.

The positive dimension of ε implies that the coupling
between the two replicas is a relevant perturbation and
that on large scales a behaviour different from that of an
independent system can be seen. When ε is positive, the
energy cost εlds for the excitation of droplets of radius l
leads to the suppression of droplets larger than

l∗ ∼ (kT/ε)1/ds .

On scales beyond l∗, droplet excitations must occur in
both replicas simultaneously. This costs twice the energy
of a single droplet in an independent system. The coupled
system thus behaves on large scales exactly like a single
system with twice the coupling strength J .

As stated in the preceding section, for ε = 0 droplets of
size l occur with a probability proportional to (L/l)dl−θkT
in a system of size L. Since for positive ε droplets of size
greater than l∗ are suppressed, the change in the link over-
lap due to a small positive ε can be written as

q(L)(ε)− q(L)(0) ∼ kT
L∑
l>l∗

lds−d−θ. (3)
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In order to suppress each droplet only once, the sum
must be taken over distinct length scales l, e.g., l =
l∗, 2l∗, 4l∗, ..., and it is proportional to the first term.
Therefore, we can write q(L)(ε)− q(L)(0) ∼ kT (l∗)ds−d−θ,
and using the expression for l∗ given above we have,

q(L)(ε)− q(L)(0) ∼ kT (ε/kT )(d+θ−ds)/ds . (4)

For negative ε, flipping a droplet of radius l in one of
the replicas changes the system’s energy by an amount
proportional to lθ − |ε|lds, which is negative for l > lc
with lc ∼ |ε|1/(θ−ds). Therefore, there is a proliferation of
droplets beyond this length scale and the spin glass state
is completely restructured. We followed the flow of the
parameters ε, J , and ∆ε (the width of the distribution of
ε) under a change of scale in the MKA and found that
∆ε diverges, while J and ε eventually decrease to zero.
Such a system is an Edwards-Anderson spin glass with
the effective spins ρi = σiτi.

Since droplets of size larger than lc proliferate for neg-
ative ε, the change in the link overlap is given in this case
by

q(L)(ε)− q(L)(0) ∼ −(lc)ds−d ∼ −|ε|(d−ds)/(ds−θ). (5)

We thus find that q(L)(ε)− q(L)(0) has the form A±|ε|λ± ,
with values A and λ that depend on the sign of ε. Within
MKA, it is λ+ ' 0.62, and λ− ' 0.57. For a cubic lattice,
and with ds ' 2.2 [17], one obtains λ+ ' 0.45, and λ− '
0.40. Again, with the more recent value for ds given in [4],
we would get λ+ ' 0.19, and λ− ' 0.13.

For finite temperatures and small systems, there are
corrections to this asymptotic behaviour due to finite-size
effects which replace the nonanalyticity at ε = 0 with a
linear behaviour for small |ε|, and due to the influence
of the critical fixed point, where the leading behaviour is
linear in ε (see below). As we have argued in [10], the
influence of the critical fixed point changes the apparent
value of the low-temperature exponents for the system
sizes studied in Monte-Carlo simulations and the MKA.
The data shown in [14] with an apparent value of 0.5 for
λ± are fully compatible with the above predictions of the
droplet picture. There is no indication of a jump at ε = 0
in q(L)(ε), which would be the signature of RSB. For the
MKA, the apparent exponent at 0.7Tc is close to 1 for
L ' 16, leading to the “trivial” behaviour found in [14].
However, at lower temperatures, for the same small system
sizes the above-mentioned nontrivial features predicted by
the droplet picture become clearly visible, as shown in
Figure 8.

Let us conclude this section with a discussion of the
link overlap at the critical temperature. Figure 9 shows
our result in MKA. Clearly, the curves are linear at ε = 0,
indicating that the regular part dominates over the sin-
gular, critical contribution. This conclusion is confirmed
by studying the scaling dimension of ε at Tc. Iterating
the recursion relations for the coupling constants, we find
that under a change in length scale, x → x/b, we obtain
ε→ bφε with φ ' 1.14. Now, q(L)(ε) can be obtained from
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Fig. 8. q(L)(ε) in MKA at T ' 0.38Tc (bottom) and 0.14Tc

(top) as function of sign(ε)|ε|0.6 for various system sizes. Each
curve is averaged over several 1000 samples.
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Fig. 9. q(L)(ε) in MKA at T ' Tc for various system sizes.

the free energy via the relation

q(L)(ε) = (1/3N)∂(lnZ)/∂ε,

implying a scaling behaviour q(L) → bd−φq(L). Substitut-
ing b with ε gives then the relation

q(L) ∼ ε(d−φ)/φ ' ε1.6.

Compared to the linear regular part, this singular depen-
dence cannot be seen for small ε.

5 Finite size effects

As we have argued throughout this paper and in earlier
work [10,19], finite size effects appear to be large for the
Ising spin glass in three dimensions. To understand this
behaviour, we iterated the MK recursion relations starting
at various temperatures below Tc. In Figure 10 the solid
lines show the data for J2

n as a function L = 2n where
n is the number of iterations of the MK recursion rela-
tions. For large L, one expects J2

n ' 22nθ. However, it is
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apparent that even at T ' 0.7Tc one needs system sizes
L ' 100 to see this behaviour. Because the change in the
slope d lnJ2/d lnL is so slow, J2(L) appears to be de-
scribed by a power law with some effective exponent over
small windows of one decade in L, just as we found for
P (P )(0) in [10]. To understand the large crossover regime,
we consider an expansion around the zero-temperature
fixed point, where the effective temperature T = 1/J at a
length scale L can be written as

dT/d lnL = −θT +AT 3 +BT 5 + ..., (6)

where A, B, ... are constants and even order terms are ab-
sent because T → −T (or {Jij} → {−Jij}) is a symmetry
of the Hamiltonian. Now, d = 3 is close to the lower criti-
cal dimension for Ising spin glasses (so that Tc is in some
sense small), and one might expect that truncating the
above equation after the first few terms will give a good
approximation for T or equivalently J throughout the low
temperature phase. We now show that this is indeed the
case: keeping terms up to T 5 gives a good description of
the MK data of Figure 10.

The analysis is as follows: At Tc, dT/dL = 0 so that
θ = AT 2

c + BTc
4. For small deviations away from Tc i.e.

T = Tc + δT , the correlation length exponent ν is defined
via d ln(δT )/d lnL = 1/ν, leading to 1/ν = 2θ + 2BT 4

c .
Solving for A and B in terms of ν, θ and Tc, we find
A = (2θ − 1/2ν)/T 2

c and B = (1/ν − 2θ)/2T 4
c . Now we

substitute these expressions into the above equation and
integrate from a length scale L0 (temperature T0) to a
length scale L (temperature TL) to get an equation relat-
ing TL to T0. Then using TL = 1/JL gives the correspond-
ing equation for JL. Setting L/L0 = 2n and 2θν = x, we
find

(J2
n − J2

c )x[
J2
n − x−1

x J2
c

](x−1)
=

(J2
0 − J2

c )x[
J2

0 − x−1
x J2

c

](x−1)
22nθ, (7)

where J0 is the coupling at the starting point n = 0 and
Jn is the coupling after n iterations.

To test whether equation (7) is a good approximation,
we have inserted the values J2

n obtained from the MK re-
cursion relations into the left hand side of equation (7).
We have chosen ν = 2.8 and θ = 0.25, in agreement
with [10,15]. The result are the data points given in Fig-
ure 10. They satisfy a power law with exponent 2θ and
a prefactor (J2

0 − J2
c )x/(J2

0 − (x − 1/x)J2
c )(x−1), show-

ing that equation (7) is indeed an appropriate description
of the growth of the coupling throughout the low tem-
perature phase. Now, for large Jn and J0, equation (7)
reduces to pure power law behaviour viz. J2

n ' J2
0 22nθ

and the crossover length for the different temperatures
can be read off as the length for which (J2

n−J2
c )2θν/(J2

n−
(2θν−1)J2

c /2θν)(2θν−1) becomes of the same order as J2
n.

Beyond the crossover length, we should see the correct
low-temperature exponents.

Thus, we have seen that the three-dimensional spin
glass in MKA can be well described by an approxima-
tion that is valid close to the lower critical dimension and
that shows explicitly that crossover scales are large. The

10
0

10
1

10
2

10
3

10
4

10
5

L

10
−1

10
0

10
1

10
2

10
3

10
4

LH
S

 o
f E

qn
.7

,J
2

Fig. 10. J2
n (solid lines) and left hand side of equation (7)

(symbols) as a function of system size L = 2n for (from top to
bottom) T = 0.3Tc, 0.5Tc, 0.7Tc, 0.9Tc.

analysis described above is quite general and should be
applicable also to the Ising spin glass on a cubic lattice.
There is one caveat however: the analysis we have carried
out is valid for the couplings alone. Other quantities (for
example P (q(P )) or P (q(L))) would have to be studied sep-
arately and it is possible that the crossover lengths would
be somewhat different for different quantities.

6 Conclusion

In this paper, we have studied the link overlap between
two identical replicas of a three-dimensional Ising spin
glass in Migdal-Kadanoff approximation. The width of the
link overlap distribution decreases to zero with increasing
system size at Tc as well as in the low-temperature phase.
These findings are in agreement with the predictions of the
droplet picture. For system sizes similar to the ones used
in Monte-Carlo simulations of a cubic lattice, we find the
same large sample-to-sample fluctuations and asymmet-
ric curve shapes as reported from those simulations. They
must be interpreted as a finite-size effect and cannot be
taken as an indicator for replica-symmetry breaking. The
only reliable indicator for RSB would be a width of the
overlap distribution that does not decrease with increasing
system size.

Similarly, the link overlap in the presence of a weak
coupling between the two replicas shows in MKA in the
spin glass phase the singular behaviour predicted by the
droplet picture. Data from Monte-Carlo simulations are
also in full agreement with the droplet picture. The RSB
picture predicts a jump in the mean value of the link over-
lap at zero coupling strength that is not visible in Monte-
Carlo simulation data published so far.

We have reproduced phenomenologically the influence
of the critical point on the growth of the coupling con-
stants using an approximation that is valid close to the
lower critical dimension. This gives us a direct estimate
of the lengthscale at any given temperature beyond which
one needs to go in order to see zero-temperature (droplet)
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scaling without crossover effects from critical point be-
haviour intruding too strongly. This crossover effect of-
ten seems to get overlooked in the literature. For example
Komori, Yoshino and Takayama [20] in a numerical sim-
ulation of the Ising spin glass at a temperature of 0.84Tc

found that critical scaling of the dynamics worked well:
they found that correlation data at time t could be col-
lapsed for systems of linear dimension L for values of L
up to 7, by plotting against the variable t/Lz(T ), where
z(T ) is similar to the critical point dynamical exponent.
This behaviour was interpreted by Marinari, Parisi and
Ruiz-Lorenzo [21] as evidence against droplet scaling but
it is clear from our work that for the system sizes studied
at temperatures so close to Tc droplet scaling would be
unobservable and that critical point scaling should indeed
work quite well.

We therefore conclude that the droplet picture, com-
bined with finite-size effects, can fully explain all data for
the link overlap in the Ising spin glass. There is no evi-
dence for the presence of RSB.

We benefitted from discussions with E. Marinari. This
work was supported by EPSRC Grants GR/K79307 and
GR/L38578.
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